
FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 1

11.. IInnttrroodduuccttiioonn ttoo RR

FFIISSHH 556600:: AApppplliieedd MMuullttiivvaarriiaattee SSttaattiissttiiccss ffoorr EEccoollooggiissttss

Topics

1. What is R
2. Installing R
3. Libraries, packages and sources for R
4. Importing and exporting data
5. Variables, Data Structure, Graphing

WHAT IS R?

R is a language and environment for statistical computing and graphics, similar to the S language
originally developed at Bell Labs. It is an open source solution to data analysis that is supported by a
large and active worldwide research community. R is exceptional statistical software for ecological
analysis as it includes a broad range of multivariate techniques, as well as numerous routines for
exploratory data analysis. It handles and analyzes data very effectively and it contains a suite of
operators for data manipulation, simulation and calculation. It also has the graphical capabilities for
very sophisticated graphs and data displays. Finally, it is an elegant, object-oriented programming
language. Technically, the language is called S, and R is the open source implementation available for
many systems for free. The R project was started by Robert Gentleman and Ross Ihaka (that’s where
the name “R” is derived) in the Statistics Department at the University of Auckland in 1995. The
software has quickly gained a wide audience. The R project web page is http://www.r-project.org.

R is a powerful programming environment, but can be intimidating if you know little about
programming. There aren’t any flashy buttons to press, just an unforgiving, blinking prompt that offers
little comfort and no direction. But don’t worry; we’re in this together. Manuals and tutorials are
available at http://cran.r-project.org/other-docs.html.

Luckily for you, most of the multivariate techniques we’ll be performing in this class can be performed
by R programs and require relatively little understanding of the R programming language. Program
authors typically bundle sets of statistical programs into libraries that can be downloaded from the web
and called from R. In the following sections we cover some of the basics of R. Learning these
fundamentals is essential for FISH 560 because it will help you unleash the power of R for multivariate
analysis.

WHY USE R?

R has many features to recommend it:
 Most commercial statistical software platforms cost thousands, if not tens of thousands of

dollars. R is free! If you are a teacher or a student, the benefits are obvious
 R runs on a wide variety of platforms including Windows, UNIX and Mac OS X.
 R is a comprehensive statistical platform, offering all manner of data analytic techniques.
 R has state-of-the-art graphics capabilities.
 R provides an unparalleled platform for programming statistical methods in an easy manner.
 R contains advanced statistical routines not yet available in other packages.

A quick note on font conventions

All R documents provided in class are typed using Trebuchet MS font. However,
when R code is presented, referenced, or when R output is given, I have used 10
point Bold Courier New Font.

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 2

OBTAINING AND INSTALLING R

R is freely available from the Comprehensive R Archive Network (CRAN) at http://www.r-project.org.
Precompiled binaries are available for Linux, Mac OS X, and Windows. Follow directions for installing
the base product on the platform of your choice. Later we'll talk about adding additional functionality
through optional modules called packages (also available from CRAN).

LIBRARIES AND PACKAGES FOR MULTIVARIATE ANALYSIS

R comes with extensive capabilities right out of the box. However, some of its most exciting features
are available as optional modules that you can download and install. There are thousands of user
contributed modules called packages that you can download from the CRAN website. They provide a
tremendous range of new capabilities, from the analysis of geostatistical data to multivariate data! We
will use many of these optional packages in FSH 560.

What are packages?
Packages are collections of R functions, data, and compiled code in a well-defined format. The
directory where packages are stored on your computer is called the library. The function .libPaths()
will show you where your library is located, while the function library() will show you what packages
you have saved in your library.

Installing a package
There are a number of R functions that let you manipulate packages. To install a package for the first
time, use the install.packages() command or click on the packages pull down menu at the top of the R
program. For example, install.packages() without options will bring up a list of CRAN mirror sites.

Once you select a site, you will be presented with a list of all available packages. Selecting one will
download and install it. You only need to install a package once. However, like any software, packages
are often updated by their authors. Use the command update.packages() to update any packages that
you have installed. To see details on your packages, you can use the installed.packages() command.

Loading a package
Installing a package downloads it from a CRAN mirror site and places it in your library. To actually use
it in an R session, you need to load the package using the library() command. For example, to use the
packaged vegan, issue the command library(vegan). Of course, you must have installed a package
before you can load it. You will have to load a package once in each session you want to use it.

At present, there are a number of libraries or packages available specifically for multivariate analyses
typically conducted by ecologists, including VEGAN from Jari Oksanen and LABDSV from Dave Roberts.
These libraries are available at CRAN website and can be installed using the instructions above. We
will make extensive use of them in subsequent lectures/labs, so be sure to install these packages at
the beginning of each lab.

Learning about a package
When you load a package, a new set of functions and datasets become available. Small illustrative
datasets are provided along with sample code, allowing you to try out the new functionalities. The help
system contains a description of each function (along with examples), and information on each dataset
included. Entering help(package="name") will provide a brief description of the package named and an
index of the functions and datasets included. Using help()with any of these function or dataset names
will provide further details. The same information can be downloaded as a PDF manual from CRAN.

SOURCES FOR MULTIVARIATE ANALYSIS

Biostats.R is a suite of R functions written by Kevin McGarigal (University of Massachusetts) to facilitate
the analysis of multivariate data sets. This is a pseudo-library that contains a set of functions that must

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 3

be sourced by clicking on the File menu at the top, and then clicking on Source R code …. Locate the
file Biostats.R from your directory. Help documentation has been provided.

IMPORTING DATA INTO R

Getting data into any program is often the hardest part about using the program. For R, this is
generally not true, as long as the data are reasonably formatted. The R Development Core Team has
developed a special manual to cover the ins and outs of getting data into and out of R. It's available as
a PDF or HTML at http://cran.r-project.org.

The first thing to do before importing any file is to tell R what directory your file is in. Do this by going
under the File menu and choosing the “Change dir” option. Type in or browse to the directory of your
data file and press the OK button.

The easiest way to format the data is in columns, with column headings, and blanks or tabs between.
For example:

sample elev aspect slope river
 1 1300 240 30 skagit
 2 1640 170 20 cowlitz
 3 1840 NA 24 quinault

 100 1730 70 15 skagit

The columns do not need to be straight, but multi-word variables need to be connected or put in
quotes. The R convention (but it is just a convention) is to connect with a period. It CANNOT be

Common mistakes in R programming

There are some common mistakes made frequently by both beginning and experienced R
programmers. If your program generates an error be sure the check for the following:

Using the wrong case. help(), Help(), and HELP() are three different functions (only the first will
work).

Forgetting to use quote marks when they are needed. install.packages("vegan") will work, while
install.packages(vegan) will generate an error.

Forgetting to include the parentheses in a function call. help() rather than help. Even if there are
no options, you still need the ().

Using the \ in a path name on Windows. R sees the backslash character as an escape character.
setwd("c:\mydata") will generate an error. Use setwd("c:/mydata") or setwd("c:\\mydata")
instead.

Using a function from a package that is not loaded. The function hclust() is contained in the
vegan package. If you try to use it before loading the package, you will get an error.

The error messages in R can be cryptic, but if you are careful to follow the points above, you
should avoid seeing many of them.

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 4

connected with "$". Recent versions of R allow connections with "_", but this will cause problems with
older versions of R. The above file (if named "site.dat" for instance) could be read with the read.table
command as follows:

site <- read.table('site.dat',header=TRUE)

The resulting data frame would be named "site", and the columns would be named exactly as in the
data file. Note that the value for aspect in the third sample is NA. This is a missing value code, and
will cause R to treat that value as missing, rather than as a code NA. It's possible to use other codes as
missing values if you specify them in the read.table command. For example, suppose in your data set
you used -999 as the missing value code. To tell R to set -999 to missing, add the na.strings= argument
as follows:

site <- read.table('site.dat',header=TRUE,na.strings="-999")

Preferably, data can be organized as a "csv" comma delimited file, as follows:

sample,elev,aspect,slope,river
1,1300,240,30,skagit
2,1640,170,20,cowlitz
3,1840,90,24,quinault
.
.
.
100,1730,70,15,skagit

In which case it would be read:

site <- read.table('site.dat',header=TRUE,sep=",") to tell R that the values were
separated by commas. Alternatively, you can use:

site <- read.csv('site.dat',header=TRUE) to read the file, as read.csv() calls read.table()
with the appropriate parameters as defaults.

Finally, if the data are in a formatted file with no delimiters (spaces or commas) it can be read by
specifying the columns that start each field. For example:

1130024030skagit
2164017020cowlitz
31840 9024quinault

1001730 7015skagit

can be read

site <- read.table('site.dat',sep=c(1,4,8,11,13))

In this case (or in any case where column headings are absent), they can be entered separately with
the names command. For example:

names(site) <- c("sample","elev","aspect","slope","river")

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 5

Row names (such as sample IDs) can also be added if desired, using the row.names() function in a
similar way.

There is one element of read.table() that sometimes causes problems. Ordinarily, read.table()
will use the first column that contains all unique values as the row labels. Generally (but not
universally) this is the first column. It is often best to explicitly specify which column contains row
identifiers (as opposed to data), using row.names= specifier. Going back to the original example,

site <- read.csv('site.dat',header=TRUE, row.names=1) makes sure that R knows that
the first column is identifiers, not data.

The beauty of the read.table() function is the way it handles variables. If any value in a column is
alphabetic, it treats the column as composed of "factors," or categorical variables.

Troubleshooting
Sometimes you may have data in a format R will not understand. In such cases using scan () or the data
editor to enter your data may be a simple and easy solution. Another trick is to try importing the data
into another program, such as a spreadsheet program, and saving it as a different file type. In
particular saving spreadsheet data in a text (comma or tab delineated) format is simple and useful.
Caution should be used as some spreadsheet programs may restrict the number of data values to be
stored.

EXPORTING DATA FROM R

Exporting results from R is usually a less difficult task. The most common method is to write a matrix
or data frame to file as a rectangular grid of numbers, possibly with row and column labels. This can be
done by the functions write.table and write. Function write just writes out a matrix or vector in a
specified number of columns (and transposes a matrix). Function write.table is more convenient, and
writes out a data frame (or an object that can be coerced into a data frame) with row and column
labels.

USING OUTPUT AS INPUT – REUSING RESULTS

One of the most useful design features of R is that the output of analyses can easily be saved and used
as input to additional analyses. Let's walk through an example. If you don't understand the statistics
involved, don't worry. We are focusing on the general principle here.

This following code will run a simple linear regression of miles per gallon (mpg) on car weight (wt)
using the dataset mtcars. Results are sent to the screen. Nothing is saved.

lm(mpg~wt, data=mtcars)

This time, the same regression is performed but the results are saved under the name fit.

fit <- lm(mpg~wt, data=mtcars)

No output is sent to the screen. However, we now can manipulate the results.

The assignment has actually created a list called "fit" that contains a wide range of information from
the analysis (including the predicted values, residuals, regression coefficients, and more). Typing
summary(fit) provides details of the analysis, while plot(fit) produces diagnostic plots. You can
generate and save influence statistics with cook<-cooks.distance(fit). plot(cook) will graph
these influence statistics. To predict miles per gallon from car weight in a new set of data use
predict(fit, mynewdata).

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 6

To see what a function returns, look at the Value section of the online help for that function. Here we
would look at help(lm). This will tell you what is saved when you assign the results of that function
to a name.

VARIABLES

Like most programming languages, R allows users to create variables, which are essentially named
computer memory. For example, you may store the number of species in a sample in a variable.
Variables are identified by a name assigned when they are created. Names should be unique, and long
enough to clearly identify the contents of the variable. You may work with the same data weeks or
months later, and variable names like x or data are not very helpful. Names can consist of letters,
numbers, and the character ".". They may not start with a number, or include the character "$" or any
arithmetic symbols as these have special meaning in R.

Variables are assigned a value in an assignment statement, which in R has the variable name to the left
of a left-pointing arrow (typed with the "less than" followed by a "dash") with the value behind the
arrow. For example,

number.species <- 137

Recent versions of R allow you to use the = sign for an assignment, i.e. number.species = 137 but I will
stick with the older, more elegant arrow.

R allows the creation of variables that contain numeric values (both integers and floating point or real
numbers), characters, or special characters interpreted as "logical" values. For example:

pi <- 3.14159
small.value <- 1.0e-10
species.name <- 'Homo sapien'
human <- TRUE

Notice that real or floating point numbers can be entered with just a decimal point, or in exponential
notation, where 1.0e-10 means 1.0-10. Notice also that character variables, called "strings", should be
entered in quotes (single or double, it doesn't matter as long as they match). Finally, note that the
word TRUE is NOT surrounded by quotes. This is not the WORD TRUE, but rather the VALUE TRUE.
Logical variables can only take the values TRUE or FALSE.

Unlike many programming languages (e.g. FORTRAN or C) you do not have to tell R what kind of value
(integer, real, or character) a variable will contain; it can tell when the variable is assigned. R will only
allow the appropriate operations to be performed on a variable. For example:

species.name + 37
Error in species.name + 37: non-numeric argument to binary operator

R did not allow 37 to be added to species.name because species.name was a character variable.

DATA STRUCTURES

R is a 4th generation language, meaning that it includes high-level routines for working with data
structures, rather than requiring extensive programming by the analyst. There are 4 primary data
structures we will use repeatedly.

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 7

 Vectors: vectors are one-dimensional ordered sets composed of a single data type. Data types
include integers, real numbers, and strings (character variables)

 Matrices: matrices are two dimensional ordered sets composed of a single data type,
equivalent to the concept of matrix in linear algebra.

 Data frames: data frames are one to multi-dimensional sets, and can be composed of different
data types (although all data in a single column must be of the same type). In addition, each
column and row in a data frame may be given a label or name to identify it. Data frames are
equivalent to a flat file database, and similar to spreadsheets. Accordingly, we often refer to
specific columns in a data frame as "fields."

 Lists: lists are compound objects of associated data. Like data frames, they need not contain
only a single data type, but can include strings (character variables), numeric variables, and
even such things as matrices and data frames. In contrast to data frames, list items do not have
a row-column structure, and items need not be the same length; some can be a single value,
and others a matrix.

Vectors and Matrices
Vectors, matrices, data frames and lists are identified by a name given the data structure at the time
it is created. Names should be unique, and long enough to clearly identify the contents of the
structure. Names can consist of letters, numbers, and the character ".". They may not start with a
number, or include the character "$" or any arithmetic symbols as these have special meaning in R.

Vectors are often read in as data or produced as the result of analysis, but you can produce one simply
using the c() function, which stands for "combine." For example:

demo.vector <- c(1,4,2,6,12) produces a vector of length 5 with the values 1, 4, 2, 6, 12.

Individual items within a vector or matrix can be identified by subscript (numbered 1 - n), which is
indicated by a number (or numeric variable) within square brackets. For example, if the number of
species per sample site is stored in a vector spc.site, then

spc.site[37] = the number of species in site 37

Matrices are specified in the order "row, column", so that

veg[23,48] = row 23, column 48 in matrix veg

Individual rows or columns within a matrix can be referred to by implied subscript, where the value of
the desired row or column is specified, but other values are omitted. For example,

veg[,3] = third column of matrix veg represents the third column of matrix veg, as the row number
before the comma was omitted. Similarly,

veg[5,] = row 5 of matrix veg represents row 5, as the column after the comma was omitted. In
addition, a number of specialized subscripts can be used.

veg[] = all rows and columns of matrix veg
spcsite[a:b] = spcsite[a] through spcsite[b]
spcsite[-a] = all of vector spcsite except spcsite[a]
veg[a:b,c:d] = a submatrix of veg from row a to b and column c to d

It's even possible to specify specific subsets of rows and columns that are not adjacent.

spcsite[c(1,7,10),c(3,6,12)] = a submatrix consisting of rows 1,7 and 10, and columns 3, 6,
and 12 from matrix spcsite.

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 8

Data Frames
Data frames can be accessed exactly as can matrices, but can also be accessed by data frame and
column or field name, without knowing the column number for a specific data item. For example, in
the MAHA fish dataset (Mid-Atlantic Highlands Area containing environmental characteristics of the fish
sampling sites), there is a column labeled "Elev" that holds the elevation of each sample site. This
column can be accessed as maha$Elev, where "maha" is the name of the data frame, "Elev" is the
name of the field or column of interest, and the "$" is a separator to distinguish data frame from field.
If you are routinely working with one or a few data frames, R can be told the name(s) of the data
frames in an "attach" statement, and the data frame name and separator can be omitted. For example,
if we give the command

attach(maha)

we can specify the field "Elev" simply as "Elev" rather than "maha$Elev." This is more concise notation,
but means that we cannot have a variable with the same name as a field in a data frame that is
attached. Data frames are extraordinarily useful in R.

Lists
As noted above, a list is a compound object composed of associated data. Items within a list are
generally referred to as components. Similar to data frames, components in a list can be given a name,
and the component can be specified by name at any time. In addition, components can be specified by
their position in the list, similar to a subscript in a vector. However, in contrast to a vector, lists
components are specified in double [[]] delimiters. We will ultimately find it quite handy to create our
own lists, but for the first few labs we will just see them as results from analyses, so we'll take them as
they come and demonstrate their properties by example.

R VECTOR AND MATRIC OPERATORS

Because R is a 4th generation language, it is often possible to perform fairly sophisticated routines with
little programming. The key is to recognize that R operates best on vectors, matrices, or data fames,
and to capitalize on that. A large number of functions exist for manipulating vectors, and by extension,
matrices. For example, if veg is a plant community matrix of 100 sample sites and 200 species (sites as
rows and species as columns), we can perform the following:

 x <- max(veg[,3]) --- assigns the maximum value of species 3 among all sites
 y <- sum(veg[,5]) --- assigns the sum of species 5 abundance in all sites to y
 logveg <- log(veg+1) --- creates a new matrix called "logveg" with all values the log of the
respective values in veg (+1 to avoid log(0) which is undefined)

In addition, R supports logical subscripts, where the subscript is applied whenever the logical function
is true. Logical operators include:

 > for "greater than"
 >= for "greater than or equal to"
 < for "less than"
 <= for "less than or equal to"
 == for "equal to"
 != for "not equal to"
 & for "and"
 | for "or"

For example:

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 9

 q <- sum(veg[,8]>10) --- assigns q the number of sites where the abundance of species 8 is
greater than 10 (veg[,8]>0 is evaluated as 1 (true) or 0 (false), so that the sum is of 0's and 1's).
 r <- sum(veg[,8][veg[,8]>10]) --- assigns r the sum of the abundance for species 8 in sites
where species 8 has abundance greater than 10
 deep14 <- max(veg[,14][soil=='deep']) --- assigns the maximum abundance for species 14
on sites with deep soils

A final case is of special note. Missing values in a vector or matrix are always a problem in ecological
data sets. Sometimes it is best simply to remove samples with missing data, but often only one or a few
values are missing, and it's best to keep the sample in the matrix with a suitable missing value code.
For now lets assume that we have missing values in a vector. To use all of the vector EXCEPT the
missing value, use

spc.site[!is.na(spc.site)]

That's complicated enough to merit some discussion. The R function to identify a missing value is

is.na()

so that to say all of a vector except missing values, we set a logical test to be true when values are not
missing. Since the R operator for "not" is !, the correct test is

!is.na()

and to specify which vector we're testing for missing value, we put the vector in parentheses as
follows:

!is.na(spc.site)

Accordingly, the full expression is

spc.site[!is.na(spc.site)]

This use of missing values is critical to R because all operations on vectors or matrices must have the
same number of elements. So, if there are missing values in any field we're using in a calculation, the
same record (row) must be omitted from all the other fields as well.

ROW OR COLUMN OPERATIONS ON A MATRIX

Vector operators can be applied to every row or column of a matrix to produce a vector with the apply
command. For example:

spcmax <- apply(veg,2,max) creates a vector "spcmax" with the maximum value for each species
in its respective position. The apply operator is employed as:

apply("matrix name",1(rowwise) or 2(columnwise),vector operator)

so that

sitesum <- apply(veg,1,sum)

creates a vector of total species abundance in each site. The vector is as long as the number of rows in
matrix veg.

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 10

TRIANGULAR MATRICES

Often in community ecology we work with symmetric matrices (e.g. similarity, dissimilarity, of distance
matrices). These matrices take up extra space (since the value of the diagonal is known by definition,
and since every other value is stored twice (matrix[x,y]=matrix[y,x]). We can save space by only storing
one triangle of the matrix. In addition, some analyses require a vector argument, rather than a matrix,
and it's convenient to convert the triangular matrix to a vector. This can be done as follows:

triang <- matrix[row(matrix) > col(matrix)]

GRAPHING IN R

R has a powerful graphics capability that is much of the appeal to using the system. Many of the
analyses have special plotting capabilities that allow you to plot results without storing multiple
intermediate products. R supports a fairly broad range of graphic devices in addition to excellent on-
screen plotting. Reflecting its origins on unix computers, it is quite good at Postscript output, but also
includes other formats. The devices available to you for plotting will depend to some extent on your
operating system (Windows versus unix/linux).

X11
In unix/linux, we will be mostly working with X11. If you give R a plotting command without first
opening a device, an X11 window will pop up automatically to contain the plot. This plotting area is
usually a convenient size for working, and can be resized with the mouse to almost any size. Normally,
this is convenient and sufficient. Sometimes, however, we want absolute control over the aspect ratio
of the plot, so that 100 units on the X axis is exactly the same size as 100 units on the Y axis. There is a
small number of ways to ensure that the plotting is "square", but all of them assume that the plotting
window has not been re-sized with the mouse. Accordingly, it is sometimes important to know how to
create a plotting window of a specific size.

In R, the X11 window is controlled by the x11() function. The size of the window is specified in inches
as arguments to the function. For example, to get a window 8 inches wide by 6 inches tall

x11(height=6,width=8)

This is simple, except that you can't control the location. You can, however, move the window with
your mouse. As long as you don't resize it you are fine.

Other Devices
The list of other devices you can plot also depends on operating system. R includes postscript, pdf,
pictex, and xfig as vector devices, and png and jpeg as raster (pixel) devices as well as x11. Simply
type:

?Devices or help(Devices) to get a list of available devices and their names (note the capital D
on Devices). Each of the devices has options that can be set to control plot size, orientation (landscape
or portrait), font size, etc.

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 11

SOME COMMON PLOTTING FUNCTIONS

(borrowed from Statistics using R with Biological Examples, Seefeld and Linder)

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 12

HIGH-LEVEL PLOTTING
(borrowed from R for Beginners, Emmanuel Paradis)

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 13

LOW-LEVEL PLOTTING
R has a set of graphical functions that affect an already existing graph: they are called low-level
plotting commands. Here are the main ones (borrowed from R for Beginners, Emmanuel Paradis):

GRAPHICAL PARAMETERS

In addition to low-level plotting commands, the presentation of graphics can be improved with
graphical parameters. They can be used either as options of graphic functions (but it does not work for
all), or with the function par to change permanently the graphical parameters, i.e. the subsequent
plots will be drawn with respect to the parameters specified by the user. For instance, the following
command:

par(bg="yellow")

will result in all subsequent plots drawn with a yellow background. There are 73 graphical parameters,
some of them have very similar functions. The exhaustive list of these parameters can be read with
?par; I will limit the following table to the most usual ones (borrowed from R for Beginners,
Emmanuel Paradis).

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 14

PLOTTING SYMBOLS, LINES AND COLORS

Below are the plotting symbols in R (pch=1:25). The colors were obtained with the options
col="blue", bg="yellow", the second option has an effect only for the symbols 21–25. Any
character can be used (pch="*", "?", ".", . . .). Borrowed from R for Beginners by Emmanuel Paradis.

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 15

FISH 560: Applied Multivariate Statistics for Ecologists (2011, J.D. Olden) 16

SAVING GRAPHICS

Notice that when the graphics window is active the main menu is different. On the File menu there
are many options for saving a graphic, including different graphical formats (png, bmp, jpg) and other
formats (metafile, postscript, pdf). You could also use command line functionality to save, but using
the options under the File menu is easier and pops up a save as dialog box allowing you to choose the
directory you are saving the graphic file to.

Another option to save a graphic is to simply right mouse click on the graphic, which will produce a pop
up menu with options to copy or save the graphic in various formats as well as to directly print the
graphic. In a Windows environment the copy options are as a bitmap or metafile, and the save options
are as metafile or postscript.

SUMMARY

In this document, we have looked as some of the strengths that make R an attractive option for
students, researchers, statistician, and data analysts trying to understand the meaning of their data.
We have walked through the program's installation and talked about how to enhance R's capabilities by
downloading additional packages. We have explored the basic interface, running programs interactively
and in batch, and produced a few sample graphs. We have also learned how to save our work to both
text and graphic files. Hopefully, you're getting a sense of how powerful this freely available software
can be. Now that we have R up and running, it's time to get our data into the mix.

ADDITIONAL RESOURCES

CRAN http://www.r-project.org/
Quick-R http://www.statmethods.net/index.html
Graphing in R http://www.statmethods.net/graphs/creating.html

GETTING HELP

Virtually everything in R has some type of accessible help documentation. The challenge is
finding the documentation that answers your question. This section gives some suggestions for
where to look for help.

Program Help Files: The quickest and most accessible source of help when using R is to use the
on-line help system that is part of R. This includes on-line documentation for the R base
packages, as well as on-line documentation for any loaded packages. Finding help when you
know the name of what it is you’re asking for help on is easy, just use the help function with the
topic of interest as the argument of the help function. For example to get help on function sum:

help(sum)

As an alternative to calling the help function you can just put a question mark in front of the
topic of interest:

?sum

Note that on-line help is especially useful for describing function parameters, which this
document will not discuss in great detail because many functions in R have lots of optional
parameters (read.table for example has about 12 different optional parameters). You should
become comfortable looking up functions using help to get detailed parameter information for
use in R.

